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Abstract
We exhibit types whose natural cardinality is fractional. More precisely, we show that the
groupoid cardinality (as defined by Baez-Dolan) of the denotation of the type of a singleton
reversible program p with exactly k distinct proofs of reversibility has cardinality 1/k. We fur-
ther show that this type is naturally a multiplicative inverse to the type of all iterates pi of that
reversible program. We situate this work as an extension of a larger reversible programming
language (Π), and show that this extension is also reversible.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

In modern treatments of type theory, types have the structure of weak ω-groupoids. As a
first approximation, we can think of such structures as sets with points (objects) and paths
(equivalences) between the points and higher paths between these paths and so on. Here are
two simple but non-trivial examples:

a b c d e f
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*
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Baez and Dolan [4] assign to each groupoid a cardinality that counts the objects up to
equivalences. The groupoid on the left has six points a, b, c, d, e, and f with two groups of
three points each clustered in an equivalence class and hence the groupoid has cardinality 2.
The (2-)groupoid on the right has one point ∗ with four equivalences id, p, q, and q′ on it.
The equivalences q and q′ are however identified by α leaving only three distinct isomorphism
classes and hence making the cardinality 1
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Both groupoids involve some notion of (semantic) “equivalence”, which we would like
to capture as first-class entities in a programming language. In other words, we would like
to have some syntactic notion of a type, a fractional type, whose denotation would be a
groupoid with fractional cardinality. Our aim then is to create a language which possesses
these fractional types, explore this notion of types, their equivalence, and their associated
operational semantics.

The remainder of the paper is organized as follows. We start by reviewing necessary
background material, consisting of the language Π for programming with isomorphisms or
equivalences in a reversible information-preserving way. Sec. 4 explains the main novel seman-
tic ideas of using Π programs to generate non-trivial groupoids with fractional cardinality,
as well as translating the semantic ideas into an extension of Π with new type constructors
denoting non-trivial groupoids and new programs that manipulate such types. The last
section puts our work in perspective and concludes.

2 Programming with Equivalences

The main syntactic vehicle for the technical developments is the language Π whose only
computations are isomorphisms between finite types and equivalences between these iso-
morphisms [10, 16]. We present the syntax and operational semantics of the parts of the
language relevant to our work.

2.1 Syntax of Π
The Π family of languages is based on type isomorphisms. In the variant we consider, the
set of types τ includes the empty type 0, the unit type 1, and sum ⊕ and product ⊗ types.
The values classified by these types are the conventional ones: () of type 1, inl(v) and inr(v)
for injections into sum types, and (v1, v2) for product types. The language has two other
syntactic categories of programs to be described in detail.

▶ Definition 1 (Π). The syntax of Π is given by the following categories:

(Types) τ ∶∶= 0 ∣ 1 ∣ τ1 ⊕ τ2 ∣ τ1 ⊗ τ2
(Values) v ∶∶= () ∣ inl(v) ∣ inr(v) ∣ (v1, v2)
(1-combinators) c, p ∶ τ1 ↔ τ2 [see Fig. 1]
(2-combinators) α ∶ c1 ⇔ c2 where c1, c2 ∶ τ1 ↔ τ2 [see Fig. 2]

Both classes of programs, 1-combinators c, and 2-combinators α, denote equivalences in the
Homotopy Type Theory (HoTT) sense [29]. The elements c or p of 1-combinators denote
type isomorphisms. The elements α of 2-combinators denote the set of sound and complete
equivalences between these type isomorphisms. Using the 1-combinators, it is possible to
write any reversible boolean function and hence encode arbitrary boolean functions by a
technique that goes back to Toffoli [30]. The 2-combinators provide a layer of programs that
computes semantics-preserving transformations of 1-combinators. As a small example, let
us abbreviate 1⊕ 1 as the type 2 of booleans and examine two possible implementations of
boolean negation. The first directly uses the primitive combinator swap+ ∶ τ1 ⊕ τ2 ↔ τ2 ⊕ τ1
to exchange the two values of type 2; the second uses three consecutive swap+s to achieve
the same effect:

not1 = swap+
not2 = (swap+ ⊙ swap+)⊙ swap+
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unite+l ∶ 0⊕ τ ↔ τ ∶ uniti+l
unite+r ∶ τ ⊕ 0 ↔ τ ∶ uniti+r
swap+ ∶ τ1 ⊕ τ2 ↔ τ2 ⊕ τ1 ∶ swap+

assocl+ ∶ τ1 ⊕ (τ2 ⊕ τ3) ↔ (τ1 ⊕ τ2)⊕ τ3 ∶ assocr+

unite⋆l ∶ 1⊗ τ ↔ τ ∶ uniti⋆l
unite⋆r ∶ τ ⊗ 1 ↔ τ ∶ uniti⋆r
swap⋆ ∶ τ1 ⊗ τ2 ↔ τ2 ⊗ τ1 ∶ swap⋆

assocl⋆ ∶ τ1 ⊗ (τ2 ⊗ τ3) ↔ (τ1 ⊗ τ2)⊗ τ3 ∶ assocr⋆

absorbr ∶ 0⊗ τ ↔ 0 ∶ factorzl
absorbl ∶ τ ⊗ 0 ↔ 0 ∶ factorzr

dist ∶ (τ1 ⊕ τ2)⊗ τ3 ↔ (τ1 ⊗ τ3)⊕ (τ2 ⊗ τ3) ∶ factor
distl ∶ τ1 ⊗ (τ2 ⊕ τ3) ↔ (τ1 ⊗ τ2)⊕ (τ1 ⊗ τ3) ∶ factorl

id ∶ τ ↔ τ

c1 ∶ τ1 ↔ τ2 c2 ∶ τ2 ↔ τ3

c1 ⊙ c2 ∶ τ1 ↔ τ3

c1 ∶ τ1 ↔ τ2 c2 ∶ τ3 ↔ τ4

c1 ⊕ c2 ∶ τ1 ⊕ τ3 ↔ τ2 ⊕ τ4

c1 ∶ τ1 ↔ τ2 c2 ∶ τ3 ↔ τ4

c1 ⊗ c2 ∶ τ1 ⊗ τ3 ↔ τ2 ⊗ τ4

Each 1-combinator c has an inverse ! c, e.g, ! unite+l = uniti+l, !(c1 ⊙ c2) = !c2⊙ !c1, etc.

Figure 1 Π 1-combinators [16]

We can write a 2-combinator whose type is not2 ⇔ not1:

(linv⊙l � id) • idl⊙l

which not only shows the equivalence of the two implementations of negation but also shows
how to transform one to the other. This rewriting focuses on the first two occurrences of
swap+ and uses linv⊙l to reduce them to id since they are inverses. It then uses idl⊙l to
simplify the composition of id with swap+ to just swap+.

Fig. 1 lists all the 1-combinators which consist of base combinators (top) and compositions
(bottom). Each line of the base combinators introduces a pair of dual constants1 that witness
the type isomorphism in the middle. This set of isomorphisms is known to be sound and
complete [13, 12]. As the full set of 2-combinators has 113 entries, Fig. 2 lists a few of the
2-combinators that we use in this paper. Each 2-combinator relates two 1-combinators of
the same type and witnesses their equivalence. Both 1-combinators and 2-combinators are
invertible and the 2-combinators behave as expected with respect to inverses of 1-combinators.

▶ Proposition 1. For any c ∶ τ1 ↔ τ2, we have c⇔ ! (! c).

▶ Proposition 2. For any c1, c2 ∶ τ1 ↔ τ2, we have c1 ⇔ c2 implies ! c1 ⇔ ! c2.

1 where swap+ and swap⋆ are self-dual.



XX:4 Fractional Types

c ∶ τ1 ↔ τ2

id ∶ c⇔ c

c1, c2, c3 ∶ τ1 ↔ τ2 α1 ∶ c1 ⇔ c2 α2 ∶ c2 ⇔ c3

α1 • α2 ∶ c1 ⇔ c3

c1 ∶ τ1 ↔ τ2 c2 ∶ τ2 ↔ τ3 c3 ∶ τ3 ↔ τ4

assoc⊙l ∶ c1 ⊙ (c2 ⊙ c3)⇔ (c1 ⊙ c2)⊙ c3 ∶ assoc⊙r

c ∶ τ1 ↔ τ2

idl⊙l ∶ id⊙ c⇔ c ∶ idl⊙r
c ∶ τ1 ↔ τ2

idr⊙l ∶ c⊙ id⇔ c ∶ idr⊙r

c ∶ τ1 ↔ τ2

rinv⊙l ∶ !c⊙ c⇔ id ∶ rinv⊙r
c ∶ τ1 ↔ τ2

linv⊙l ∶ c ⊙ !c⇔ id ∶ linv⊙r

sumid ∶ id⊕ id⇔ id ∶ splitid

c1 ∶ τ5 ↔ τ1 c2 ∶ τ6 ↔ τ2 c3 ∶ τ1 ↔ τ3 c4 ∶ τ2 ↔ τ4

hom⊕⊙ ∶ (c1 ⊙ c3)⊕ (c2 ⊙ c4)⇔ (c1 ⊕ c2)⊙ (c3 ⊕ c4) ∶ hom⊙⊕

c1, c3 ∶ τ1 ↔ τ2 c2, c4 ∶ τ2 ↔ τ3 α1 ∶ c1 ⇔ c3 α2 ∶ c2 ⇔ c4

α1 � α2 ∶ c1 ⊙ c2 ⇔ c3 ⊙ c4

c1, c3 ∶ τ1 ↔ τ2 c2, c4 ∶ τ2 ↔ τ3 α1 ∶ c1 ⇔ c3 α2 ∶ c2 ⇔ c4

resp⊕⇔ α1 α2 ∶ c1 ⊕ c2 ⇔ c3 ⊕ c4

c1, c3 ∶ τ1 ↔ τ2 c2, c4 ∶ τ2 ↔ τ3 α1 ∶ c1 ⇔ c3 α2 ∶ c2 ⇔ c4

resp⊗⇔ α1 α2 ∶ c1 ⊗ c2 ⇔ c3 ⊗ c4

Each 2-combinator α has an inverse 2! α, e.g, 2! assoc⊙l = assoc⊙r, 2!(α1 • α2) =

(2! α2) • (2! α1), etc.

Figure 2 Π 2-combinators (excerpt) [10]

2.2 Semantics
We give an operational semantics for the 1-combinators of Π which represent the conventional
layer of programs. Operationally, the semantics consists of a pair of evaluators that take
a combinator and a value and propagate the value in the forward direction ▷ or in the
backward direction ◁. We show the complete forward evaluator in Fig. 3; the backward
evaluator is easy to infer.

As an example, let 3 abbreviate the type (1⊕ 1)⊕ 1. There are three values of type 3
which are ll = inl(inl(())), lr = inl(inr(())), and r = inr(()). Pictorially, the type 3 with its
three inhabitants can be represented as the left-leaning tree:

⋅

⋅

0 1
2
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unite+l ▷ (inr(v)) = v
uniti+l ▷ v = inr(v)

unite+r ▷ (inl(v)) = v
uniti+r ▷ v = inl(v)
swap+ ▷ (inl(v)) = inr(v)
swap+ ▷ (inr(v)) = inl(v)

assocl+ ▷ (inl(v)) = inl((inl(v)))
assocl+ ▷ (inr((inl(v)))) = inl((inr(v)))
assocl+ ▷ (inr((inr(v)))) = inr(v)
assocr+ ▷ (inl((inl(v)))) = inl(v)
assocr+ ▷ (inl((inr(v)))) = inr((inl(v)))
assocr+ ▷ (inr(v)) = inr((inr(v)))

unite⋆l ▷ ((), v) = v
uniti⋆l ▷ v = ((), v)

unite⋆r ▷ (v, ()) = v
uniti⋆r ▷ v = (v, ())
swap⋆ ▷ (v1, v2) = (v2, v1)

assocl⋆ ▷ (v1, (v2, v3)) = ((v1, v2), v3)
assocr⋆ ▷ ((v1, v2), v3) = (v1, (v2, v3))

absorbr ▷ (v,_) = v
absorbl ▷ (_, v) = v

dist ▷ (inl(v1), v3) = inl((v1, v3))
dist ▷ (inr(v2), v3) = inr((v2, v3))

factor ▷ inl((v1, v3)) = (inl(v1), v3)
factor ▷ inr((v2, v3)) = (inr(v2), v3)

distl ▷ (v1, inl(v3)) = inl((v1, v3))
distl ▷ (v2, inr(v3)) = inr((v2, v3))

factorl ▷ inl((v1, v3)) = (v1, inl(v3))
factorl ▷ inr((v2, v3)) = (v2, inr(v3))

id ▷ v = v
(c1 ⊙ c2) ▷ v = c2 ▷ (c1 ▷ v)
(c1 ⊕ c2) ▷ (inl(v)) = inl((c1 ▷ v))
(c1 ⊕ c2) ▷ (inr(v)) = inr((c2 ▷ v))
(c1 ⊗ c2) ▷ (v1, v2) = (c1 ▷ v1, c2 ▷ v2)

Figure 3 Π operational semantics

Note that the values of type 3 are the names of the paths from the root to each of the leaves.
We use 0, 1 and 2 as ordinals, to give an order to each of the values.

There are, up to equivalence, six combinators of type 3 ↔ 3, each representing a
different permutation of three elements that leave the shape of the three unchanged. The six
permutations on 3 can be written as Π-terms:

perm... = id
perm××. = swap+ ⊕ id
perm.×× = assocr+ ⊙ (id⊕ swap+)⊙ assocl+
perm→ = perm××. ⊙ perm.××

perm← = perm.×× ⊙ perm××.

perm×.× = perm→ ⊙ perm××.

Tracing the evaluation of perm××. on each of the possible inputs yields:

(swap+ ⊕ id) ▷ inl(inl(())) = inl(swap+ ▷ inl(()))
= inl(inr(()))

(swap+ ⊕ id) ▷ inl(inr(())) = inl(swap+ ▷ inr(()))
= inl(inl(()))

(swap+ ⊕ id) ▷ inr(()) = inr(id ▷ ())
= inr(())

Thus the effect of combinator perm××. is to swap the values inl(inl(())) and inl(inr(()))
leaving the value inr(()) intact. In other words, the effect of perm××. can be visualized as
giving the tree:
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⋅

⋅

1 0
2

These trees should also make it clear why mathematicians shorten their notation to

(0 1 2
1 0 2) for the same permutation. We will not do so, as this notation is untyped, as it

does not enforce that the shape of the tree is preserved.
Iterating perm××. again is equivalent to the identity permutation, which can be verified

using 2-combinators:

perm××. ⊙ perm××. = (swap+ ⊕ id)⊙ (swap+ ⊕ id)
⇔ (swap+ ⊙ swap+)⊕ (id⊙ id)
⇔ id⊕ id
= id

More generally we can iterate 1-combinators to produce different reversible functions
between finite sets, eventually wrapping around at some number which represents the order
of the underlying permutation.

▶ Definition 2 (Iterated Power of a 1-combinator). The kth iterated power of a 1-combinator
p ∶ τ ↔ τ , for k ∈ Z is

p
k
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

id k = 0
p⊙ p

k−1
k > 0

(! p)⊙ p
k+1

k < 0

▶ Definition 3 (Order of a 1-combinator). The order of a 1-combinator p ∶ τ ↔ τ , order(p),
is the least postitive natural number k ∈ N+ such that pk⇔ id.

For our example combinators on the type 3, simple traces using the operational semantics
show the combinator perm... is the identity permutation; the combinators perm.×× and
perm×.× swap two of the three elements leaving the third intact; and the combinators perm→
and perm← rotate the three elements. We therefore have:

order(perm...) = 1
order(perm××.) = order(perm.××) = order(perm×.×) = 2

order(perm→) = order(perm←) = 3

We should note that the above definition is the only one in this paper which is not effective.
While there is an obvious method to compute it using the action of a 1-combinator on the
elements of the type it acts on, this is extremely inefficient. We do not have an effective
algorithm for computing it that works on the syntax of combinators. The (only) difficulty is
⊙, which can have an arbitrary effect on the order.

The 2-combinators, being complete equivalences between 1-combinators [10], also capture
equivalences regarding power of combinators and their order.

▶ Lemma 4. For p ∶ τ ↔ τ , m,n ∈ Z, we have a 2-combinator dist p m n ∶ (pm ⊙ p
n)⇔

p
m+n.

▶ Lemma 5. For p ∶ τ ↔ τ , n ∈ Z, pk+n⇔ p
n where k = order(p).
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3 From Sets to Groupoids

From a denotational perspective, a Π type τ denotes a finite set, a Π 1-combinator denotes
a permutation on finite sets, and the 2-combinators denote coherence conditions on these
permutations [10]. Formally, the language Π is a categorification [3] of the natural numbers
as a symmetric rig groupoid [26]. This structure is a symmetric bimonoidal category or a
commutative rig category in which every morphism is invertible. The underlying category
consists of two symmetric monoidal structures [24] separately induced by the properties
of addition and multiplication of the natural numbers. The monoidal structures are then
augmented with distributivity and absorption natural isomorphisms [22] to model the full
commutative semiring (aka, commutative rig) of the natural numbers. Despite this rich
structure, the individual objects in the category for Π are just plain sets with no interesting
structure. In this section we introduce, in the denotation of Π, some non-trivial groupoids
which we call iteration groupoids and symmetry groupoids. Products of these groupoids
behave as expected which ensures that a sensible compositional programming language can
be designed around them.

3.1 Π Types as Sets (Discrete Groupoids)

Each Π type τ denotes a (structured) finite set JτK as follows:

J0K = ⊥

J1K = ⊤

Jτ1 ⊕ τ2K = Jτ1K ⊎ Jτ2K
Jτ1 ⊗ τ2K = Jτ1K × Jτ2K

where we use ⊥ to denote the empty set, ⊤ to denote a set with one element, and ⊎ and ×
to denote the disjoint union of sets and the cartesian product of sets respectively. Each
set can be viewed as a groupoid whose objects are the set elements and with only identity
morphisms on each object. Nevertheless, the denotations of 1⊕ (1⊕ 1) of (1⊕ 1)⊕ 1 are
not in fact equal, although they are trivially isomorphic.

By only being able to express types whose denotations are trivial groupoids, Π leaves
untapped an enormous amount of combinatorial structure that is expressible in type theory.
We show that with a small but deep technical insight, it is possible to extend Π with types
whose denotations are not discrete.

3.2 Groupoids and Groupoid Cardinality

There are many definitions of groupoids that provide complementary perspectives and insights.
Perhaps the simplest definition to state, and the one which is most immediately useful for our
work, is that a groupoid is a category in which every morphism has an inverse. Intuitively,
such a category consists of clusters of connected objects where each cluster is equivalent (in
the category-theoretic sense) to a group, viewed as a 1-object category. Thus an alternative
definition of a groupoid is as a generalization of a group that allows for individual elements
to have “internal symmetries” [31]. Baez et al. [2] associate with each groupoid a cardinality
that counts the elements up to these “internal symmetries”.

▶ Definition 6 (Groupoid cardinality [2]). The cardinality of a groupoid G is the (positive)
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a c

id id

a b c

id id id

a b c

id id id

Figure 4 Example groupoids G1, G2, and G3.

real number:

∣G∣ =∑
[x]

1
∣Aut(x)∣

provided the sum converges. The summation is over isomorphism classes [x] of objects x
and ∣Aut(x)∣ is the number of distinct automorphisms of x.

For plain sets, the definition just counts the elements as each element is its own equivalence
class and has exactly one automorphism (the identity). Without quite formalizing them and
relying on the informal diagrams until the next section, we argue that each of the groupoids
G1, G2, and G3 in Fig. 4 has cardinality 3

2 . Groupoid G1 consists of two isomorphism
classes: class a has one object with one automorphism (the identity) and class c has one
object with two distinct automorphisms; the cardinality is 1

1 +
1
2 =

3
2 . For groupoid G2, we

also have two isomorphism classes with representatives a and c; the class containing a has
two automorphisms starting from a: the identity and the loop going from a to b and back.
By the groupoid axioms, this loop is equivalent to the identity which means that the class
containing a has just one automorphism. The isomorphism class of c has two non-equivalent
automorphisms on it and hence the cardinality of G2 is also 1

1 +
1
2 =

3
2 . For G3, we have

three isomorphism classes, each with two non-equivalent automorphisms, and hence the
cardinality of G3 is 1

2 +
1
2 +

1
2 =

3
2 . It is important to note that G1 and G2 are categorically

equivalent groupoids, but that G3 is not categorically equivalent to either G1 or G2. Roughly
speaking this is because the number of connected components is also a categorical invariant
of a groupoid, and here G1 and G2 have 2 whilst G3 has 3.

3.3 Π-Combinators as Automorphism Classes
To formalize the counting above, we need, in the context of Π, a precise definition of what it
means for automorphisms to be “distinct”. We start with an example. Recall the type 3 with
its three elements ll = inl(inl(())), lr = inl(inr(())), and r = inr(()). One of the combinators
of type 3↔ 3 is perm××.. Observing the results of applying the iterates (perm××.)k for k ∈ Z
on the three elements we find:

(perm××.)2k ▷ ll = ll

(perm××.)2k ▷ lr = lr

(perm××.)2k ▷ r = r

(perm××.)2k+1 ▷ ll = lr

(perm××.)2k+1 ▷ lr = ll

(perm××.)2k+1 ▷ r = r

Furthermore, Lem. 5 gives us the following families of 2-combinators α2k ∶ id⇔ (perm××.)2k

and α2k+1 ∶ perm××. ⇔ (perm××.)2k+1. We can put these facts together to construct
a groupoid whose objects are the elements of 3, whose 1-morphisms relate vi and vj if
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(perm××.)k ▷ vi = vj for some k ∈ Z, and whose 2-morphisms are the families α2k and
α2k+1 above. Such a construction produces the following groupoid where each family of
1-morphisms that are identified by a family of 2-morphisms is drawn using a thick line:

ll lr r

perm××. perm××.

id id id

Clearly, the resulting groupoid is a reconstruction of G2 in Fig. 4 using Π types and
combinators. As analyzed earlier, this groupoid has cardinality 3

2 . From the perspective
of Π, this cardinality corresponds to the number of elements in the underlying set which is 3
divided by the order of the combinator perm××. which is 2. It is important to note that, as
Def. 3 states, the calculation of the order of a 1-combinator is defined up to the equivalence
induced by 2-combinators.

3.4 Iteration Groupoids #p

The previous construction known in the literature as an action groupoid [31] is quite useful:
it allows us to take a set of cardinality N and a permutation on that set of order P to
construct a groupoid of cardinality N

P
. Although this idea allows us to construct a groupoid

of cardinality 3
2 as shown above, it is not expressive enough to construct a groupoid of

cardinality, say, 1
3 . Indeed, if the underlying set has only one element (N = 1) the only

permutation is the identity and P must be 1.
The construction, however, already contains the main ingredient needed for the construc-

tion of more general groupoids with fractional cardinality. This key piece is the set of iterates
of a combinator which we formally define as follows.

▶ Definition 7 (Iter(p)). For each 1-combinator p ∶ τ ↔ τ , we form the set Iter(p) whose
elements are triples consisting of an integer k, a 1-combinator q ∶ τ ↔ τ and a 2-combinator
α ∶ q⇔ p

k.

Each triple encodes our knowledge that we have some (arbitrary) iterate q of p; we do not
have any a priori knowledge of the actual syntactic structure of q, but we do know that it is
equivalent to pk. For example, we have:

Iter(perm××.) = {⟨0, id, id⟩, ⟨1, perm××., idr⊙r⟩, ⟨−1, perm××., id⟩, . . .}

The idea is that Iter(perm××.) is, up to equivalence, the set of all distinct iterates (perm××.)k
of perm××.. Because of the underlying group structure of automorphisms, there are, up to
equivalence, only order(perm××.) distinct iterates in Iter(perm××.). In a proof-irrelevant
setting, Iter(perm××.) is simply {id, perm××.}. In this section and the next, we will use the
elements of Iter(p) in two groupoid constructions as either objects (emphasizing their “data”
aspect) or morphisms (emphasizing their “symmetry” aspect).

Given a 1-combinator p ∶ τ ↔ τ , we define the groupoid #p as follows. The objects
are the elements of Iter(p), i.e., the triples ⟨k, q, α⟩ indexed by integers k, 1-combinators
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q ∶ τ ↔ τ , and 2-combinators α ∶ q⇔ p
k. We then add (reversible) morphisms between any

iterates related by 2-combinators; categorically, this will make any such objects equivalent.
If p has order o, Lem. 5 gives us a 2-combinator α which witnesses that pi⇔ p

i+o. Thus
given two iterates ⟨i, qi, αi⟩ and ⟨i + o, qj , αj⟩, they must be equivalent since αi • α • !αj
shows that qi⇔ qj . In other words pj will be equivalent to pk exactly when j and k differ
by o. This informal description formalizes straightforwardly.

▶ Definition 8 (#p). For each 1-combinator p ∶ τ ↔ τ , we form the groupoid #p as follows:
objects are the elements ⟨k, q, α⟩ of Iter(p);
there is a morphism between ⟨k1, q1, α1⟩ and ⟨k2, q2, α2⟩ for each α ∶ q1 ⇔ q2

Despite its involved internal structure, the groupoid #p is essentially a set of cardinality
order(p).

▶ Lemma 9. ∣#p∣ = order(p)

Proof. Let o = order(p). There are o isomorphism classes of objects. Consider an object
x = ⟨k, q, α⟩, its isomorphism class [x] = ⟨k + io, qi, αi⟩ where i ∈ Z. The group Aut(x) is

the group generated by id and has order 1. Hence ∣#p∣ =
o

∑
1

1
1 = o. ◀

As an example, the groupoid #(perm××.) can be represented as follows. Up to equivalence,
this groupoid is indeed equivalent to a set with two elements id and perm××..

. . .
< −2, id, . . . > < −1, perm××., . . . > < 0, id, id > < 1, perm××., . . . > < 2, id, . . . > . . .

id id id id id

α−2,0 α0,2

α−1,1

3.5 Symmetry Groupoids 1/#p

The elements of Iter(p) form a group under the following operation:

⟨k1, p1, α1⟩ ◦ ⟨k2, p2, α2⟩ = ⟨k1 + k2, p1 ⊙ p2, (α1 � α2) • (dist p k1 k2)⟩

where dist p k1 k2 is defined in Lem. 4. The common categorical representation of a group
is a category with one trivial object and the group elements as morphisms on that trivial
object. Our construction of the groupoid 1/#p is essentially the same.

▶ Definition 10 (1/#p). For each 1-combinator p ∶ τ ↔ τ , we form the 2-groupoid 1/#p as
follows:

the objects are the iterates of the identity combinator on τ ;
the morphisms between every pair of objects are the elements of Iter(p);
there is a 2-morphism between 1-morphisms ⟨k1, q1, α1⟩ and ⟨k2, q2, α2⟩ for every α ∶
q1 ⇔ q2.

Note that for each power pi of p, there is a morphism ⟨k, q, α⟩ in Iter(p) such that q
annihilates pi to the identity.
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Remark.

Note also that everything is well-defined even if we choose p ∶ 0 ↔ 0. In that case, the
cardinality is 1.

▶ Lemma 11. ∣1/#p∣ = 1
order(p)

Proof. Let o = order(p). The objects form one isomorphism class [p]. There are, up to
equivalence, exactly order(p) distinct morphisms on this equivalence class. Hence, the group
Aut([p]) is the group generated by p0

, p
1
. . . p

o−1, and the cardinality ∣1/#p∣ is 1
o
. ◀

As an example, the groupoid 1/#(perm××.) can be represented as follows.

. . .
< −2, id, . . . > < −1, id, . . . > < 0, id, id > < 1, id, . . . > < 2, id, . . . > . . .

id id id id id

α−2,0 α0,2 α0,2 α0,2

perm××. perm××. perm××. perm××. perm××.

3.6 Looping and Delooping
Our constructions of #p and 1/#p are instances of a general pattern that we have instantiated
to the setting of Π and adapted to explicitly refer to weak (i.e., up to ⇔ in our case)
equivalences. In the general construction [23], a group G is known to induce two groupoids,
a looping groupoid LG and a delooping groupoid BG. These are defined as follows.

The looping groupoid LG has the elements g of the group G as objects and morphisms
between elements in the same conjugacy class; that is, there is a morphism between elements g
and h iff there exists an x ∈ G such that h = x−1 ⋅ g ⋅ x. Fixing a type τ and a particular
1-combinator p ∶ τ ↔ τ , we get a group whose elements are the iterates pk. The corresponding
looping groupoid has all the iterates as objects, and morphisms between pk1 and pk2 whenever
there exists an integer j such that pk2 is equivalent to p−j ⊙ p

k1 ⊙ p
j . By Lem. 4, the latter

term is⇔-equivalent to p−j+k1+j which is⇔-equivalent to pk1 . In other words, we have a
morphism between pk1 and pk2 whenever they are⇔-equivalent which is consistent with our
definition of iteration groupoids.

The delooping groupoid BG has one trivial element ∗, and for each group element g a
morphism (loop) from ∗ to ∗. Modulo⇔-equivalences, this is consistent with our definition
of symmetry groupoids.

3.7 Products of Iteration and Symmetry Groupoids
If we are to build a compositional programming language around iteration and symmetry
groupoids, we need to ensure that they compose sensibly with the existing type formers.
Groupoids, viewed as categories, come associated with natural notions of sums and products,
and one might expect or hope that identities which hold for rational numbers lift to identities
in our situation. The integration of these groupoids with the categorical sum is complicated
and left for future work. For products, the most prominent identity, from which many other
identities follow, is:

#p⊛ 1/#p ≃ #id
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The left hand side is the categorical product of the iteration groupoid and symmetry groupoid
for some arbitrary 1-combinator p. The cardinality of this groupoid is 1. The right hand
side is the iteration groupoid for the identity 1-combinator which also has cardinality 1. The
groupoids on either side are however not isomorphic, there do not exist full and faithful
functors between them, and hence ≃ cannot be categorical equivalence.

There are however weaker notions of groupoid equivalence, such as Morita equiva-
lence [23][17, C5.3], that identify the two groupoids above. Although the notion of equivalence
we use in the next section appears novel, it is related “in spirit” to Morita equivalence and
we find it useful to give a small example. We will verify that the product of the groupoid
#perm← of cardinality 3 and the groupoid 1/#perm← of cardinality 1

3 is Morita equivalent
to the trivial groupoid with only one distinct object and one trivial automorphism. To
avoid clutter, we assume the groupoids are strict, e.g., that the groupoid #perm← has three
elements (instead of 3 isomorphism classes of elements).

Getting an equivalence in this case reduces to finding a Morita morphism from #id to
#perm← ⊛ 1/#perm←. This is a functor ψ from the unit groupoid to the product groupoid,
say G, with an additional condition that the commutative diagram below is a pullback, where
s, t are the source and target maps, and 1, 3 are the 1- and 3-point discrete groupoids defined
previously.

Q

#id G

1 × 1 3 × 3

ξ1

(s,t) ψ1

(s,t) (s,t)
ψ0×ψ0

The intuition is that the codomain consists of three objects with associated morphisms, each
of them counting as a “third.” The functor from #id to #perm← ⊛ 1/#perm← must include
an arbitrary choice of “which third” to target and the universality condition of the pullback
ensures that the choice is ultimately insignificant as it leads to the same result as every other
possible functor.

To summarize, the equivalence between the two groupoids requires a local map that
chooses a target and a global condition ensuring that the choice ultimately annihilates. The
challenge we aim to solve in the next section is to turn this idea into an operational semantics
that somehow combines the local and global aspects of the equivalence. We will be inspired
by the folklore result in the categorical semantics of dependent type theory [5], first explained
by Paul Taylor [28], that “substitution into a dependent type is a pullback”.

4 Π/: Syntax and Semantics

We are now ready to turn the groupoid constructions from the previous section into an
extension of Π with new type constructors and combinators for creating and manipulating
syntactic counterparts to #p and 1/#p. Just adding the “obvious” types and combinators
does not work; however, as the failures are quite informative, we nevertheless go through
this first attempt. This will help illustrate why we need extra machinery in Sec. 4.2.
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unite⋆l/ ∶ #id⊛ T ⧟ T ∶ uniti⋆l/
unite⋆r/ ∶ T⊛#id ⧟ T ∶ uniti⋆r/
swap⋆/ ∶ T1 ⊛ T2 ⧟ T2 ⊛ T1 ∶ swap⋆/

assocl⋆/ ∶ T1 ⊛ (T2 ⊛ T3) ⧟ (T1 ⊛ T2)⊛ T3 ∶ assocr⋆/

η− ∶ #id ⧟ 1/#c⊛#c ∶ ε−
η+ ∶ #id ⧟ #c⊛ 1/#c ∶ ε+

id/ ∶ T⧟ T

ρ1 ∶ T1 ⧟ T2 ρ2 ∶ T2 ⧟ T3

ρ1 ⊚ ρ2 ∶ T1 ⧟ T3

α ∶ c1 ⇔ c2

#α ∶ #c1 ⧟ #c2

ρ1 ∶ T1 ⧟ T2 ρ2 ∶ T3 ⧟ T4

ρ1 ⊛ ρ2 ∶ T1 ⊛ T3 ⧟ T2 ⊛ T4

Each combinator ρ has an inverse.

Figure 5 Π/ fractional combinators (non-dependent version)

4.1 First attempt: non-dependent version
As a first approximation to the language we seek, we consider adding three new syntactic
categories to the definition of Π in Sec. 2.1:

▶ Definition 12 (Non-dependent Π/). The syntax of (non-dependent) Π/ is given by the
following categories:

(Types) τ ∶∶= [see Def. 1]
(Values) v ∶∶= [see Def. 1]
(1-combinators) c ∶ τ1 ↔ τ2 ∶∶= [see Def. 1]
(2-combinators) α ∶ c1 ⇔ c2 where c1, c2 ∶ τ1 ↔ τ2 ∶∶= [see Def. 1]

(Fractional Types) T ∶∶= #c ∣ 1/#c ∣ T1 ⊛ T2

(Fractional Values) V ∶∶= c
k ∣ 1/ck ∣ ⟨V,V⟩

(/-combinators) ρ ∶ T1 ⧟ T2 ∶∶= [see Fig. 5]

The syntactic category T of fractional types introduces type expressions for iteration
groupoids, symmetry groupoids, and their products. The combinators that relate these frac-
tional types are in Fig. 5. The bottom group includes identity and sequential composition ⊚
combinators and ensures that the combinators can be applied anywhere inside a product ⊛.
There is also a combinator that relates two types #c1 and #c2 via #α whenever α ∶ c1 ⇔ c2.
Indeed if c1 and c2 are considered equivalent via a 2-combinator then we also consider their
iteration groupoids to be equivalent. The top group ensures that ⊛ carries a symmetric
monoidal structure with combinators witnessing the unit, commutativity, and associativity
properties. The last two pairs of combinators η− /ε− and η+ /ε+ are inspired from the
definition of compact closed categories [19] which are symmetric monoidal categories in which
every object has a dual. They are the ones that witness the “fractional” nature of symmetry
groupoids as motivated in Sec. 3.7.

The last new syntactic category in Π/ is that of values which deserves some additional
discussion. When types denote sets, values of a type are clear: they are just the elements of
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unite⋆l/
#c

#id

#c

η+

#c

1/#c assocr⋆/ 1/#c

#c

ε−

#id

#c

unite⋆r/
#c

Figure 6 Zigzag

the set. In the case when types are groupoids, this is less clear, especially when the groupoid
cardinality is a proper fraction. What we get instead are equivalence classes of values. The
idea is not uncommon: in the conventional λ-calculus, we list λx.x and λy.y as separate
values of type τ → τ and then provide a separate equivalence relation (α-equivalence) to
express the fact that these two values are indistinguishable. The treatment in our setting is
similar: for iteration groupoids #c, every distinct iterate ck is listed as a separate value with
the understanding that some iterates are⇔-equivalent. Similarly for symmetry groupoids
1/#c, every morphism is listed as a value 1/ck with the same understanding that some of
these morphisms are⇔-equivalent.

To understand the challenge in designing an operational semantics for η and ε in the
non-dependent setting, we consider the “zigzag” circuit in Fig. 6. Algebraically this circuit
corresponds to the following manipulation on types:

x↦ (1 × x)↦ ((x × 1/x) × x)↦ (x × (1/x × x))↦ (x × 1)↦ x

and by the coherence conditions of compact closed categories, we expect this circuit, when
run in either direction, to be equivalent to the identity. Consider now the case of a combinator
c whose order is greater than or equal to 2, i.e., the type #c has at least two distinct values
id and c and the type 1/#c has at least two distinct values 1/id and 1/c. We require this
circuit to produce id when given id from either end, and similarly to produce c when given
c from either end. The problem becomes apparent when one observes that the uses of η+
in the left-to-right execution and the use of ε− in the right-to-left execution must behave
differently depending on the incoming value. But the “local” information available to either
of these combinators does not include the “global” information about the incoming value
and there is no way for them to make consistent guesses locally. It is possible to design an
operational semantics that uses computational effects to enable spatially separated parts
of the program to communicate in a way that is reminiscent of entanglement in quantum
mechanics. Possibilities to realize this communication are global reference cells, backtracking,
and logical variables with unification. We choose however to present in the next section a
more abstract approach that encodes the required dependency in dataflow constraints using
dependent types.

4.2 Dependent Pointed Types
We modify the syntax of Π/ as follows.

▶ Definition 13 (Dependent Π/). The syntax of dependent Π/ differs from Def. 12 as follows:

(Fractional Types) T• ∶∶= [#c, ck] ∣ [1/#c, 1/ck] ∣ [T1 ⊛ T2, ⟨v1, v2⟩] ∣ ∀k.T• ∣ ∃k.T•
(/-combinators) ρ• ∶ T1•q T2• ∶∶= [see Fig. 7]
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unite⋆l/ ∶ ⋄□k.[#id⊛ T, ⟨id, v⟩] q ⋄□k.[T, v] ∶ uniti⋆l/
unite⋆r/ ∶ ⋄□k.[T⊛#id, ⟨v, id] q ⋄□k.[T, v] ∶ uniti⋆r/
swap⋆/ ∶ ⋄□k.[T1 ⊛ T2, ⟨v1, v2⟩] q ⋄□k.[T2 ⊛ T1, ⟨v2, v1⟩] ∶ swap⋆/

assocl⋆/ ∶ ⋄□k.[T1 ⊛ (T2 ⊛ T3), ⟨v1, ⟨v2, v3⟩] q ⋄□k.[(T1 ⊛ T2)⊛ T3, ⟨⟨v1, v2⟩, v3⟩] ∶ assocr⋆/

η− ∶ [#id, id] q ⋄□k.[1/#c⊛#c, ⟨1/ck
, c

k⟩] ∶ ε−
η+ ∶ [#id, id] q ⋄□k.[#c⊛ 1/#c, ⟨ck

, 1/ck⟩] ∶ ε+
synchl ∶ ⋄□k.[(#c⊛ 1/#c)⊛#c, ⟨⟨ck

, 1/ck⟩, ci] q [(#c⊛ 1/#c)⊛#c, ⟨⟨ci
, 1/ci⟩, ci] ∶ packl

synchr ∶ ⋄□k.[#c⊛ (1/#c⊛#c), ⟨ci
, ⟨1/ck

, c
k⟩⟩] q [#c⊛ (1/#c⊛#c), ⟨ci

, ⟨1/ci
, c

i⟩⟩] ∶ packr

id/ ∶ ⋄□k.[T, v]q ⋄□k.[T, v]
α ∶ c1 ⇔ c2

(#α)k ∶ [#c1, c
k
1]q [#c2, c

k
2]

ρ1 ∶ ⋄□k1.[T1, v1]q ⋄□k2.[T2, v2] ρ2 ∶ ⋄□k2.[T2, v2]q ⋄□k3.[T3, v3]
ρ1 ⊚ ρ2 ∶ ⋄□k1.[T1, v1]q ⋄□k3.[T3, v3]

ρ1 ∶ ⋄□k1.[T1, v1]q ⋄□k2.[T2, v2] ρ2 ∶ ⋄□k3.[T3, v3]q ⋄□k4.[T4, v4]
ρ1 ⊛ ρ2 ∶ ⋄□k1k3.[T1 ⊛ T3, ⟨v1, v3⟩]q ⋄□k2k4.[T2 ⊛ T4, ⟨v2, v4⟩]

Each combinator ρ• has an inverse ρ−1
• . A rule T1•q ⋄□k.T2• introduces a ∀ in the left-to-right direction

and eliminates an ∃ in the right-to-left direction. A rule ⋄□k.T1•q T2• eliminates a ∀ in the left-to-right
direction and introduces an ∃ in the right-to-left direction. A rule ⋄□k.T1•q ⋄□k.T2• maintains (think of
elimination then introduction) the universal quantifier in the left-to-right direction and the existential
quantifier in the right-to-left direction. We omit the quantifiers when the sequence of bound variables is
empty.

Figure 7 Π/ fractional combinators (dependent version)

In the new definition, we enrich the types to pointed types T• where each type T refers to
a particular value v in T. As all fractional types are inhabited (see Remark in Sec. 3.5), there
is no loss in generality in going to pointed types. We then allow universal quantification
over indices k associated to values, over a collection of types. In particular, the type
∀k.[#c ⊛ 1/#c, ⟨ck, 1/ck⟩] imposes a constraint on the two values associated with the
types #c and 1/#c; they must be “synchronized” by sharing the same k but are otherwise
arbitrary. Once we introduce a universal quantifier in one direction of execution, we are
led to also include an existential quantifier for the reverse execution. Intuitively, a forward
evaluation step that is at liberty to choose a k will, when reversed encounter a particular,
i.e., existentially quantified, k. A type T• is therefore generally of the form ⋄□k.[T, v] where
all the quantifiers are lifted to the top followed by a non-dependent type and a value in that
type.

The adaptation of the combinators to the pointed dependent setting in Fig . 7 is relatively
straightforward. First, the types of the combinators must keep track of how the value
currently in focus changes during evaluation, and hence directly encode the operational
semantics of the language. As suggested above, the quantifiers are interpreted differently
depending on which direction the rule is used. We use a ⋄□ notation to express the presence of
one quantifier that is interpreted differently in each direction. The notation has the advantage
of being compact, avoiding duplication, and making the symmetry of the rules explicit. We
also include two new pairs of combinators synchl/packl and synchr/packr that serve as explicit
quantifier introduction and elimination rules: they serve as explicit “synchronization” points
as illustrated in the example below.
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The example revisits the zigzag circuit in Fig. 6 using the dependent types and the new
explicit synchronization primitives. The evaluation proceeds as follows where we disambiguate
the uses of ∀ and ∃ in each direction for clarity:

Forward execution of zigzag circuit with synchronization.

[#c, ci] unite⋆l/
q [#id⊛#c, ⟨id, ci⟩]

η+⊛id/
q ∀k.[(#c⊛ 1/#c)⊛#c, ⟨⟨ck, 1/ck⟩, ci⟩]

synchl
q [⟨⟨ci, 1/ci⟩, ci⟩]

assocr⋆/
q [#c⊛ (1/#c⊛#c), ⟨ci, ⟨1/ci, ci⟩⟩]

packr
q ∃k.[#c⊛ (1/#c⊛#c), ⟨ci, ⟨1/ck, ck⟩⟩]

id/⊛ε−
q [#c⊛#id, ⟨ci, id⟩]

unite⋆r/
q [#c, ci]

Reverse execution of zigzag circuit with synchronization.

[#c, ci] unite⋆r/
q [#c⊛#id, ⟨ci, id⟩]

id/⊛ε−
q ∀k.[#c⊛ (1/#c⊛#c), ⟨ci, ⟨1/ck, ck⟩⟩]

synchr
q [(#c⊛ 1/#c)⊛#c, ⟨⟨ci, 1/ci⟩, ci⟩]

assocr⋆/
q [(#c⊛ 1/#c)⊛#c, ⟨⟨ci, 1/ci⟩, ci⟩]
packl
q ∃k.[(#c⊛ 1/#c)⊛#c, ⟨⟨ck, 1/ck⟩, ci⟩]

η+⊛id/
q [#id⊛#c, ⟨id, ci⟩]

unite⋆l/
q [#c, ci]

4.3 Additional Examples
Compact closed categories support various interesting constructions [1], such as duals, name
and coname, and trace [18, 15], which eventually lead to a certain notion of recursive
higher-order functions. These constructions do not immediately transfer to the context of Π/

as we have pointed types with explicit quantifiers and synchronization primitives that are
not present in the conventional setting. Adapting the conventional constructions requires
resolving some subtleties and will provide the first operational interpretation known to us of
multiplicative higher-order recursive functions.

5 Conclusion

We have presented a natural notion of fractional types that enriches a class of reversible
programming languages in several dimensions. While further research might show how to
use fractional types in a conventional (i.e., irreversible) programming language, their full
potential is only achieved when the ambient language guarantees that no information is
created or erased. The key semantic insight is that iterating a reversible program p on a
finite type must eventually reach the identity in order(p) steps. By being careful not to
collapse proofs, each such reversible program has order(p) distinct proofs of reversibility and
hence gives rise to a groupoid with cardinality 1

order(p) . Going from this observation to a full
programming language required several difficult and subtle design choices which we have
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explored to produce Π/. As with most functional languages, it has a natural denotational
semantics where types denote groupoids. Its operational semantics requires a mechanism to
express a computational effect which enables spatially separated parts of the program to
communicate in a way that is reminiscent of entanglement in quantum mechanics. It appears
possible to realize such an operational semantics using global reference cells, backtracking,
or other conventional technique. Rather than going via effects, we chose dependent types
to track the required constraints via dataflow. Of our various attempts at an operational
semantics, this one turned out simplest.

Our fractional types have natural denotations which are non-trivial groupoids, but they
cannot be composed with sums and they only scratch the surface of the tower of weak
ω-groupoids that is expressible in HoTT [29]. A long term goal of our research is to find
natural type constructors inspired by the rich combinatorial structure of weak ω-groupoids
that provide novel programming abstractions.

We conclude by outlining several interesting connections and potential avenues for future
work.

Quotient Types.

Certain groupoids naturally correspond to conventional quotient types. Traditionally [25],
a quotient type T � E combines a type T with an equivalence relation E that serves as
the equality relation on the elements of T . Our notion of fractional types in Π/ appears
to subsume conventional quotient types and their applications [11] (e.g., defining fractions,
multivariate polynomials, field extensions, algebraic numbers, etc.) and it would interesting
to explicitly formalize this connection.

Conservation of Information and Negative Entropy.

According to the conventional theory of communication [27], a type with N values is viewed
as an abstract system that has N distinguishable states where the amount of information
contained in each state is (logN). This entropy is a measure of information which materializes
itself in memory or bandwidth requirements when storing or transmitting elements of this
type. Thus a type with 8 elements needs 3 bits of memory for storage or 3 bits of bandwidth
for communication. The logarithmic map implies that information contained in a composite
state is the sum of the information contained in its constituents. For example, the type 2⊗ 3
can be thought of a composite system consisting of two independent unrelated subsystems.
Each state of the composite system therefore contains log(2 ∗ 3) = log 2 + log 3 bits which is
the sum of the information contained in each subsystem. If quantum field theory is correct
(as it so far seems to be) then information, during any physical process, is neither created nor
destroyed. Landauer [20, 9, 21], Bennet [6, 7, 8], Fredkin [14] and others made compelling
arguments that this physical principle induces a corresponding computational principle of
“conservation of information.” In the context of finite types, generated from the empty type 0,
the unit type 1, and sums and products ⊕ and ⊗, this principle states that the foundational
(i.e., physical) notion of computation is computation via type isomorphisms [16] or type
equivalences [10]; these are both sound and complete with respect to cardinality-preserving
maps. The introduction, in Π/, of types (groupoids) with fractional cardinalities introduces
types with negative entropy. For example, a type with cardinality 1

8 has entropy log 1
8 = −3.

It is natural to interpret this negative entropy just like we interpret “negative money,” as
a debt to be repaid by some other part of the system. In fact, the zigzag example can be
viewed as modeling a credit card transaction where the money is produced at the output site
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by generating a corresponding debt that is reconciled at the input site.

Correspondence with Commutative Semifields.

Computations over finite types naturally emerge from viewing types as syntax for semiring
elements, semiring identities as type isomorphisms, and justifications for semiring identities
as program transformations and optimizations [10]. This correspondence provides a rich
proof-relevant version of the Curry-Howard correspondence between algebra and reversible
programming languages. The addition of full fractional types to the mix would enrich the
correspondence to commutative semifields, providing a categorification [3] of the non-negative
rational numbers in a computational setting. This correspondence in Π/ is still lacking,
however. Given any non-negative rational number, we can form a type whose cardinality
is that number. And yet, our types do not capture the full structure of the non-negative
rational numbers, as these form a commutative semifield. There are a number of operations
and properties which need to be added to complete this. Most seem quite straightforward.
We can however single one out which may not be: what we are missing is a multiplicative
inverse for every type, and not just #p. In particular, we would like to form the type
1/#(1/#p) and have it be equivalent to #p. As explained in Sec. 3, this would require a
further generalization of looping and delooping that can be iterated. We leave a possible
extension with a general looping/delooping process to future work.
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